duasuku yang berturutan. Suku pertama barisan aritmetika ditulis u1, sedangkan suku ke-n dari suatu barisan bilangan aritmetika dituliskan sebagai un. Contoh: 1) Barisan aritmetika : 3, 7, 11, 15, Suku pertamanya u 1 = 3. Selisih antara dua suku yang berturutan adalah 7 -3 = 11-7 = 15-11 = 4. Jadi pembedanya adalah 4.
Rumus Barisan Aritmatika β Pembelajaran matematika dengan materi Barisan Aritmatika yang telah diajarkan di bangku sekolah ini ternyata sering muncul di beberapa soal CPNS. Itulah mengapa, materi Barisan Aritmatika ini akan selalu dipelajari oleh banyak kalangan. Terlebih lagi, meskipun terlihat mudah, tetapi materi Barisan Aritmatika ini juga sulit lhoβ¦ sehingga tetap membutuhkan pemahaman lebih untuk menjawab soal-soalnya. Sama halnya dengan materi matematika lainnya, materi Barisan Aritmatika yang selalu dibahas bersamaan dengan Barisan Geometri ini pasti memiliki rumus tersendiri. Lantas, bagaimana sih rumus Barisan Aritmatika itu? Bagaimana saja contoh soal dan pembahasan mengenai materi Barisan Aritmatika ini? Nah, supaya Grameds memahami hal-hal tersebut, yuk simak ulasannya berikut ini! Apa Rumus Barisan Aritmatika?Rumus Untuk Mencari Beda Pada Barisan Aritmatika27+ Soal-Soal Barisan AritmatikaContoh Soal Barisan Aritmatika dan PembahasannyaContoh Soal 1Contoh Soal 2Contoh Soal 3Contoh Soal 4Contoh Soal 5Contoh Soal 6Contoh Soal 7Contoh Soal 8Contoh Soal 9Contoh Soal 10 Perlu diketahui ya Grameds bahwa rumus barisan aritmatika dan deret aritmatika itu berbeda, walaupun keduanya merupakan sub bab dari materi yang sama. Nah, berikut ini adalah rumus untuk menghitung barisan aritmatika. Keterangan a = U1 = suku pertama yang terdapat pada barisan aritmatika b = beda barisan aritmatika = Un β Un-1, dengan catatan bahwa n adalah banyaknya suku n = jumlah suku Un = jumlah suku ke-n Rumus Untuk Mencari Beda Pada Barisan Aritmatika Keterangan b = beda barisan aritmatika Un = suku ke-n Un-1 β suku ke-n-1 27+ Soal-Soal Barisan Aritmatika Suku ke-40 dari barisan 7, 5, 3, 1, β¦ adalah β¦ Suku pertama dari barisan aritmatika adalah 3 dan bedanya = 4, suku ke-10 dari barisan aritmatika tersebut adalah β¦ Carilah suku ke-100 dari barisan aritmetika 2, 5, 8, 11, β¦ Tentukan suku ke-21 dari barisan aritmetika 17, 15, 13, 11,β¦ Tentukan suku ke-8 dan ke-20 dari barisan β3, 2, 7, 12, β¦. Diketahui barisan aritmetika β2, 1, 4, 7, β¦, 40. Tentukan banyak suku barisan tersebut. Diketahui suatu barisan aritmatika suku pertamanya adalah 7 dan suku ke-15 adalah 63. Tentukan beda barisan aritmatika tersebut! Suku pertama dari barisan aritmatika adalah -2 dan bedanya 5, tentukan suku ke-12 dari barisan aritmatika tersebut adalah β¦ Suku ke -3 dan suku ke -16 dari barisan aritmatika adalah 13 dan 78. Tentukanlah suku pertama dan bedanya. Rumus suku ke-n dari barisan 5, β2, β9, β16, β¦ adalah β¦ Diketahui barisan bilangan dengan suku ke-n berbentuk Un = n2 β 2n. Tuliskan 5 suku pertama dari barisan tersebut. Diketahui barisan bilangan 4, 7, 12, 19, β¦. Tentukan rumus suku ke-n. Diketahui barisan bilangan 4, 7, 12, 19, β¦. Suku keberapa dari barisan tersebut yang bernilai 199? Suku ke-15 dari barisan bilangan 2, 5, 8, 11, 14, β¦ adalahβ¦ Suku ke-45 dari barisan bilangan 3, 7, 11, 15, 19, β¦ adalahβ¦ Suku ke-50 dari barisan bilangan 20, 17, 14, 11, 8, β¦. adalahβ¦. Rumus suku ke-n barisan aritmatika 94, 90, 86, 82, β¦. adalahβ¦. Suatu barisan 1, 4, 7, 10, β¦ memenuhi pola Un = an + b. Suku ke 10 dari barisan itu adalah Suatu barisan 2, 5, 10, 17, β¦. memenuhi pola Un = an2 + bn + c. Suku ke 9 dari barisan itu adalahβ¦. Barisan 2, 9, 18, 29, β¦ memenuhi pola Un = an2 + bn + c. Suku ke berapakah 42? Suku ke 20 dari barisan 1, 1, 1, 2, 1, 3, 1, 4, 1, β¦. adalah Diketahui barisan aritmetika 1, 3, 5, 7, β¦. un = 225. Tentukan banyaknya suku n. Si Dadap berhasil lulus ujian saringan masuk PT Perguruan Tinggi. Sebagai mahasiswa, mulai 1 Januari 2008 ia menerima uang saku sebesar Rp. untuk satu triwulan. Uang saku ini diberikan setiap permulaan triwulan. Untuk setiap triwulan berikutnya uang saku yang diterimanya dinaikkan sebesar Rp. Berapa besar uang saku yang akan diterima si Dadap pada awal tahun 2011? Diketahui suku ke-1 dari barisan aritmetika adalah 6 dan suku kelimanya 18, tentukan bedanya. Dalam suatu gedung pertunjukan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah β¦ Suku ke-2 dari suatu deret aritmatika adalah 5. Jika jumlah dari suku ke-4 dan suku ke-6 dari deret tersebut adalah 28, maka suku ke-9 adalah β¦.. Suku ke-10 dan suku ke-14 dari barisan aritmetika berturut-turut adalah 7 dan 15. Tentukan suku pertama, beda, dan suku ke-20 barisan tersebut. Diketahui barisan aritmetika β2, 1, 4, 7, β¦, 40. Tentukan banyak suku barisan tersebut. Dari suatu barisan aritmetika, suku ketiga adalah 36, jumlah suku kelima dan ketujuh adalah 144. Jumlah sepuluh suku pertama deret tersebut adalah β¦. Suku pertama suatu barisan adalah 4, sedangkan suku umum ke-n untuk n > 1 ditentukan dengan rumus Un = β 5. Suku ke-3 adalah β¦ Contoh Soal Barisan Aritmatika dan Pembahasannya Contoh Soal 1 Carilah suku ke-100 dari barisan aritmetika 2, 5, 8, 11, β¦ Pembahasan a = 2 b = u2 β u1 = 5 β 2 = 3 n = 100 un = a + n β 1b un = 2 + 100 β 13 = 2 + 99 x 3 = 299 Contoh Soal 2 Diketahui barisan aritmetika 1, 3, 5, 7, β¦. un = 225. Tentukan banyaknya suku n. Penyelesaian a = 1, b = 2, un = 225 un = a n β 1b 225 = 1 + n β 12 = 1 + 2n β 2 226 = 2n n = 113 Contoh Soal 3 Si Dadap berhasil lulus ujian saringan masuk PT Perguruan Tinggi. Sebagai mahasiswa, mulai 1 Januari 2008 ia menerima uang saku sebesar Rp. untuk satu triwulan. Uang saku ini diberikan setiap permulaan triwulan. Untuk setiap triwulan berikutnya uang saku yang diterimanya dinaikkan sebesar Rp. Berapa besar uang saku yang akan diterima si Dadap pada awal tahun 2011? Penyelesaian Triwulan ke-1 u1 = a = Rp. Triwulan ke-2 u2 = a + b = Rp. dst Jadi b = Pada awal tahun 2011 telah dipakai kuliah selama 3 tahun atau 12 triwulan, berarti u12 = a + 12 β 1b = + 11 x = Jadi besarnya uang yang akan diterima si Dadap pada awal tahun 2011 adalah Rp. Contoh Soal 4 Diketahui suku ke-1 dari barisan aritmetika adalah 6 dan suku kelimanya 18, tentukan pembedanya. Penyelesaian Diketahui a = 6, dan U5 = 18 Un = a + n β 1 b U5 = 6 + 5 β 1 b 18= 6 + 4b 4b = 12 b = 3 Jadi pembedanya adalah 3. Contoh Soal 5 Tentukan suku ke-21 dari barisan aritmetika 17, 15, 13, 11,β¦ Penyelesaian Diketahui a = 17, b = -2, dan n = 21, maka U21 = 17 + 21-1-2 = -23 Jadi, suku ke-21 dari barisan aritmatika tersebut adalah -23 Contoh Soal 6 Suku ke-40 dari barisan 7, 5, 3, 1, β¦ adalah β¦ Penyelesaian Diketahui a = 7 b = β2 Ditanya π40 ? Jawab ππ = π + π β 1 π π40 = 7 + 40 β 1 β2 = 7 + 39 x -2 = 7 + -78 = β 71 Jadi, suku ke-40 barisan aritmatika tersebut adalah β71. Contoh Soal 7 Rumus suku ke-n dari barisan 5, β2, β9, β16, β¦ adalah β¦ Pembahasan Diketahui a = 5 b = β7 Ditanya rumus suku ke-n barisan aritmatika tersebut = ? Jawab ππ = π + π β 1 π = 5 + π β 1β7 = 5 β 7 π + 7 = 12 β 7 π Jadi, rumus suku ke-n barisan aritmatika tersebut adalah ππ = 12 β 7π Contoh Soal 8 Dalam suatu gedung pertunjukan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah β¦ Pembahasan Diketahui a = 12 b = 2 Ditanyakan π20 ? Jawab ππ = π + π β 1π π20 = 12 + 20 β 12 = 12 + 19 . 2 = 12 + 38 = 50 Jadi, banyaknya kursi pada baris ke-20 adalah 50 kursi Contoh Soal 9 Jumlah ke-10 dari barisan 3, 5, 7, 9, β¦.adalah β¦ Penyelesaian a = 3, b = 2, U10 = a + 9b U10 = 3 + 18 = 21 Contoh Soal 10 Suatu barisan 2, 5, 10, 17, β¦. memenuhi pola Un = an2 + bn + c. Suku ke 9 dari barisan itu adalahβ¦ Penyelesaian Diketahui Barisan 2, 5, 10, 17, β¦ ππ = ππ2 + ππ + π Ditanyakan π9 = β― ? Jawab ππ = 1π2 + 0π + 1 ππ = π2 + 1 π9 = 92 + 1 π9 = 82 Nah, itulah ulasan mengenai rumus barisan Aritmatika pada mata pelajaran Matematika yang tentunya berbeda dengan rumus menghitung deret aritmatika maupun barisan geometri. Setelah menyimak soal dan pembahasannya, apakah Grameds sudah paham bahwa rumus pada barisan dan deret dalam Aritmatika itu berbeda? Baca Juga! Rumus Luas Permukaan Kubus dan Soal-Soalnya Rumus Diameter Lingkaran Beserta Soal dan Pembahasannya Rumus Luas Permukaan Limas dan Contoh Soalnya Rumus dan Soal Operasi Perkalian Bilangan Bulat Rumus, Perluasan, dan Contoh Soal Turunan Fungsi Trigonometri Rumus Sumbu Simetri Beserta Soal dan Pembahasan Rumus dan Contoh Soal Jaring-Jaring Balok Rumus Volume Balok dan Contoh Soalnya Rumus Bola Volume, Luas Permukaan, dan Contoh Soalnya ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien
Darisuatu barisan aritmetika, diketahui 4, 10, 16, 22, . suku ke-12 dari barisan aritmetika tersebut adalah. Question from @robi20911 - MatematikaYuk kita amati ilustrasi berikut ini. Dari ilustrasi di atas, tampak bahwa selisih antara dua suku yang berurutan pada barisan Fibonacci tidaklah bernilai tetap, sedangkan selisih antara dua suku yang berurutan pada barisan bilangan genap bernilai tetap, yaitu 2. Nah, oleh karena karakter yang demikianlah, maka barisan bilangan genap termasuk ke dalam barisan aritmetika. Jadi, apa yang dimaksud dengan barisan aritmetika? Secara umum, barisan aritmetika didefinisikan sebagai barisan bilangan dimana selisih antara dua bilangan yang berurutan selalu bernilai tetap konstan. Barisan aritmetika memiliki pola sebagai berikut a , a + b , a + 2b , ... , a + n - 1b Bilangan pertama, kedua, ketiga, dan ke-n dari barisan di atas berturut-turut dinamakan suku pertama, suku ke-2, suku ke-3, dan suku ke-n. Adapun selisih antara dua suku yang berurutan dinotasikan dengan b dan dikenal dengan istilah beda antar suku atau beda. Jika Un dan Un - 1 berturut-turut menyatakan suku ke-n dan suku ke-n - 1, maka b = Un - Un - 1. Beda antar suku dari Um dan Un juga dapat ditentukan dengan rumus berikut . Perlu kalian ketahui, rumus ini biasanya digunakan untuk mencari beda antar suku jika kedua suku yang diketahui tidak berurutan. Contoh 1 Diberikan barisan aritmetika 1, 4, 7, 10, 13, 16, β¦. Tentukan rumus suku ke-n dari barisan di atas. Penyelesaian Suku pertama dan beda antar suku dari barisan aritmetika di atas berturut-turut adalah a = U1 = 1 b = U2 - U1 = 4 - 1 = 3 Dengan demikian, rumus suku ke-n dari barisan aritmetika di atas adalah Suatu barisan aritmetika memiliki suku pertama 4 dan beda antar suku 5. Tentukan suku ke-10 dari barisan tersebut. Penyelesaian Oleh karena suku pertama dan beda antar suku dari barisan aritmetika berturut-turut adalah 4 dan 5, maka a = 4 b = 5 Dengan demikian, Jadi, suku ke-10 dari barisan aritmetika tersebut adalah 49. Diberikan barisan aritmetika 1, 7, 13, 19, β¦ , 61. Tentukan banyak suku bilangan pada barisan di atas. Penyelesaian Suku pertama, beda antar suku , dan suku terakhir dari barisan aritmetika di atas berturut-turut adalah a = U1 = 1 b = U2 - U1 = 4 - 1 = 3 Un = 61 Dengan demikian, Jadi, banyak suku bilangan pada barisan aritmetika di atas adalah 11.
32 1 , 5, 6 2 1 , 8, suku ke-24 c. 5, 9, 13, 17, suku ke-50 f. -65, -61, -57, -53, suku ke-37 3. Suku ke-10 suatu barisan aritmetika adalah 41. Jika suku ke-7 adalah 29, tentukan suku ke- 50 4. Dari suatu barisan aritmetika, u 2 + u 7 = 26 dan u 3 + u 5 = 22. Tentukan suku ke-100 5. .